
Pat Miller
Center for Applied Scientific Computing

Feb 18-19, 2003

Scientific Python Workshop

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any
of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of
California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used
for advertising or product endorsement purposes. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48.

PJM 2CASC

A drama in four acts…

Prologue: Getting setup on Training computers
ACT I: Basic Scientific Python
ACT II: Using Python Numeric
ACT III: Building Simple Extensions in Python
ACT IV: MPI Parallel Programming in Python
Epilogue: Resources for further study

PJM 3CASC

ACT I: Basic Scientific Python

Why Python?
Simple Python tricks
Running programs from Python
Intermezzo: Pretend Physics
Data munging
Gnuplot: A Basic Plot package
TKinter: Build basic GUI’s
Building and installing a package
Steering: Leave the driving to us!

PJM 4CASC

Why Python?

What is Python?

python, (Gr. Myth. An enormous serpent that lurked in the cave of Mount Parnassus
and was slain by Apollo) 1. any of a genus of large, non-poisonous snakes of Asia,
Africa and Australia that suffocate their prey to death. 2. popularly, any large snake
that crushes its prey. 3. totally awesome, bitchin' language that will someday crush the
$'s out of certain other so-called VHLL's ;-) Python is an interpreted, interactive,
object-oriented programming language. It is often compared to Tcl, Perl, Scheme or
Java.

Python combines remarkable power with very clear syntax. It has modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, as well as to various windowing systems
(X11, Motif, Tk, Mac, MFC). New built-in modules are easily written in C or C++.
Python is also usable as an extension language for applications that need a
programmable interface.

Guido van Rossum: http://www.python.org/doc/Summary.html

PJM 5CASC

Why Python here at LLNL?

Some big users
—Python based Frameworks

–ADiv’s KULL code
–Climate Modeling
–Physics EOSView

—Use Python to “steer” computation
—Empower end-users

A lot of little users
—Throw away tools
—Shareable full power tools

PJM 6CASC

Simple Python tricks

Running from the Python prompt
— types and operators

Using Import
Simple functions
If-then-else
Lists, loops, and loop comprehensions
Writing scripts

PJM 7CASC

Running from the Python prompt

types: int, float, complex, string, [list], (tuple)
arithmetic: + - * / % ** abs divmod min max pow round
convert: bool chr int long str float oct ord
info: dir help id type
misc: len open range/xrange zip

TASK: Try some calculator operations at the prompt

PJM 8CASC

Using Import

>>> import math
—may load capability (once)
—creates a “module” object named math

>>> from math import sin,cos,pi
— load selected values from math
—create local names that reference originals

>>> from math import *
—sledgehammer approach to load all names and

will happily swat any previous or builtin
names“special” names are not imported (privacy)

>>> from math import __doc__
>>> math.__doc__
TASK: Are the units of sin/cos in degrees or radians?

PJM 9CASC

Playing with import

>>> import math
>>> help(math) # Get a “man” page
>>> help(math.sin)
>>> dir(math) # peek at what is inside
>>> math.pi = 16./5. # Indiana HB 246, 18971

>>> print math.pi # Don’t try this at home!

TASK: What are the angles in a 3-4-5 right triangle?
QUESTION: What is the difference between builtin
pow() and math.pow()?
1 The Straight Dope: http://www.straightdope.com/classics/a3_341.html

PJM 10CASC

Simple functions

One liners (statement functions)
—>>> def f(x): return 2*x
—>>> f(10); f(12.3); f(‘hello’); f([1,2,3])
— remember the return!

Functions see “global” values in the containing
scope where they are defined
—>>> h = 6.62606876e-34
—>>> def hx(x): return h*x
—>>> hx(3)

TASK: Write a one line function named
arithmetic_sum to compute Σi using the closed form
n*(n+1)/2

PJM 11CASC

More functions

You can have multiple arguments
—>>> def distance(x,y): return sqrt(x**2+y**2)

You may define local variables, use global variables,
and update global variables (with global statement)
—>>> def f(x):
—… x2 = x**2
—… return x*x2
—>>> h = 6.62606876e-34
—>>> def g(x):
—… h = 7 # masks the global value of h
—… return h*x
—>>> def z(x):
—… global h
—… h = 8 # Changes global value!
—… return h*x

PJM 12CASC

Still more functions

“void” functions return None (default return!)
—>>> def printit():
—… print ‘hi mom’
—… return
—>>> x = printit()
—>>> print x

functions can return multiple values (sort’a)
—>>> def quadratic_formula(a,b,c):
—… d = (b*b-4*a*c)**.5 # not sqrt function!
—… return (-b + d)/(2*a), (-b - d)/(2*a)
—>>> r0,r1 = quadratic_formula(1,-1,-1)
—>>> roots = quadratic_formula(1,-1,-1)

PJM 13CASC

Functions with documentation

def arithmetic_sum(n):
“”” arithmetic_sum

Compute sum of 0+1+2+…+n
“””
return n*(n+1)/2

>>> help(arithmetic_sum)
>>> print arithmetic_sum.__doc__

PJM 14CASC

If-then-else

>>> if x > 10:
… print “big”
… elif x > 5:
… print “medium”
… else:
… print “small”
Each type has a “=0” test (often length)
and/or are NOT boolean operations
and/or are “short circuit” (like && || in C)

PJM 15CASC

Lists and list comprehensions

>>> [1,2,3]
>>> [1,”hello”,None,3j]
>>> range(10)
>>> range(1,10)
>>> range(1,10,2)
>>> range(10,0,-2)
>>> [x**2 for x in range(10)]
>>> [x**2 for x in range(10) if x%2 == 0]

PJM 16CASC

Loops

for <values> in <driver>:
body

break/continue as in C
>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = [[1,2],[3,4],[5,6]]
>>> for x in range(10): …
>>> for x in a: …
>>> for x,y in c: …
>>> for x,y in zip(a,b): …
>>> for c in “hi mom!”: …

PJM 17CASC

Writing scripts

Scripts (.py files) are little Python programs
Scripts are “byte-compiled” in 100ths of seconds into
.pyc (“pic” or pee-why-see) files
Help you reuse helper functions
Structure tends to be…
—DOC STRING
—DEFINITIONS
— if __name__ == “__main__”:

–…

TASK: Write a script helper.py with the functions
quadratic_formula and arithmetic_sum from before

PJM 18CASC

Shell like services

>>> from glob import glob
>>> glob(‘*.py’) # like /bin/ls
>>> import os
>>> os.getcwd() # like pwd
>>> os.chdir(‘/usr/local’) # like cd
>>> sys.argv is like argc,argv (or $1 $2 or $argv in
scripts)
string methods and re for sed/awk/tr
open(‘foo’).read() # is like cat

PJM 19CASC

Running programs from Python

While a lot of standard services are available in
Python, sometimes you just want to run an existing
program
>>> import os
>>> os.system(‘ls’) # None is OK, else integer status
>>> pipe = os.popen(‘ls’) # like a file in Python
>>> pipe.read()
>>> os.popen(‘uptime’).read() # like `uptime` in shell
or perl
>>> wpipe = os.popen(‘sort’,’w’)
>>> wpipe.write(‘hello\nworld\nfoobar\n’)
>>> wpipe.close()

PJM 20CASC

popen2()

There is also a popen2() for bidirectional work, but
buffering makes it more complicated
>>> w,r = os.popen2(‘sort’)
>>> w.write(‘hello\nworld\nfoo\n’)
>>> w.close()
>>> r.read()

CAUTION: The pipes can block if the buffer overflows
or if, say, the input side of the pipe (w) isn’t flushed.

PJM 21CASC

Intermezzo: Pretend Physics

1D Lagrangian hydro (spherical, E, rho, P)
Simple data format for output/restart files

Typically, we evolve the problem forward in time and
then plot field data like density vs position

#MODE: 0
#CYCLE: 100
#DUMP: 10
#DT: 1.000000e-05
#GAMMA: 1.666667e+00
#NODES: 11
#ZONES: 10
POSITION VELOCITY DENSITY PRESSURE ENERGY
0.000000e+00 0.000000e+00
1.000000e-01 -1.000000e+00 1.000000e+00 6.666667e-11 1.000000e-10
2.000000e-01 -1.000000e+00 1.000000e+00 6.666667e-11 1.000000e-10

PJM 22CASC

Data munging

Let’s get some data
—% lagrangian –velocity=-1 –steps=1000
—This creates dump01000

TASK: What’s the density field?

Approach: Write a get_density.py script
Step 1: Get the file name (sys.argv[1])
Step 2: open the file
Step 3: Read line at a time until you get to the data
Step 4: split each line (line.split()) and take the[0]’th
and [2]’th item (position and density) and append to
an array
Step 5: return position and density array

PJM 23CASC

re – Regular expressions

Another way to search data and pull out items that
follow set patterns
We’ll only look at a simple subset from the prompt
here
>>> import re
>>> pattern = re.compile(r‘MODE:\s\S+’)
>>> match = pattern.match(data)
>>> match.group()
>>> pattern = re.compile(r‘MODE:\s(\S+)’)
>>> match = pattern.search(data)
>>> match.group()
>>> match.group(1)
>>> match.begin()
>>> match.end()

TASK: Rewrite the get_pressure()
function to use regular expressions

PJM 24CASC

Gnuplot: A Basic Plot package

There are a variety of plotting packages for Python
and some exciting new ones in the works (CHACO
from www.scipy.org for the Space Telescope people)
Also are links to high end graphics like VTK
We’ll look at a boring one , but it is easy to install on
Unix and gives us a lot of what we need for simple
plots
Gnuplot.py is actually implemented as a pipe on top
of the gnuplot program
You open a plotting “object” that you feed data
“objects” to plot as well as plotting modifiers

PJM 25CASC

Plotting

>>> from Gnuplot import Gnuplot, Data
>>> gp = Gnuplot(persist=1) # the “plot” object
>>> gp.plot([(0,0),(1,1),(2,4),(3,9)])
>>> x = range(100)
>>> y = [xi**2 for xi in x]
>>> gp.plot(Data(x,y))
>>> gp.plot(Data(x,y,title=“x squared”,with=‘linespoints’))
>>> You can overlay plots with multiple data items or “replot”
>>> gp.hardcopy(filename=‘square.ps’)
Try: help(gp.hardcopy)

PJM 26CASC

Plotting exercises…

>>> from Numeric import arange
>>> from math import pi
>>> x = 2*pi*arange(101)/100

TASK: Plot sin(x) and sin(2x)
—Try it with title= and with= options
—What happens if you plot Data(x,x)?
—Try again after

–>>> gp(‘set yrange [-1:1]’)

PJM 27CASC

Plotting Density field

Let’s combine our ability to extract the density field
with our ability to plot!
>>> from get_density import density
>>> x,y = density(‘dump01000’)
>>> gp.plot(Data(x,y,title=‘density’,with=‘linespoints’)

TASK: Write a script to plot density at step
500,1000,1500
—% lagrangian --velocity=-1 --steps=100
—% lagrangian --file=dump00100

PJM 28CASC

TKinter: Build basic GUI’s

GUIs are a great way to do data entry and value
checking and even simple plotting.
Python supports a variety of interfaces to GUI
packages
The two big ones are wxwindows and Tk
Tk is the graphics part of Tcl/Tk (Tickle Tee Kay)
Tkinter is Python support module

PJM 29CASC

The Event Loop

Tkinter uses an “event-loop” which seizes control of
the main thread and holds it, so it really has to run in
a script.
We’re only going to look at a basic “dialog” pattern,
but the variety in Tk is boundless
We’ll build buttons, labels, and data entry items….

from Tkinter import *
class dialog:

….
if __name__ == ‘__main__’:

root = Tk()
app = dialog(root)
root.MainLoop()

PJM 30CASC

Buttons
class dialog:
def hello(self):

print ‘hi Mom!’
return

def __init__(self,parent):
self.body=Frame(parent)
self.body.pack(padx=2) # More on this later!
Button(self.body,text=‘Hello’,command=self.hello).grid(row=0,column=0)
Button(self.body,text=‘Quit’,command=self.body.quit).grid(row=0,column=1)
return

PJM 31CASC

Labels
class dialog:
def hello(self):

print ‘hi Mom!’
self.hello.set(‘good-bye’)
return

def __init__(self,parent):
self.body=Frame(parent)
self.body.pack(padx=2) # More on this later!
Button(self.body,text=‘Hello’,command=self.hello).grid(row=0,column=0)
Button(self.body,text=‘Quit’,command=self.body.quit).grid(row=0,column=1)
Label(self.body,text=‘Hello).grid(row=1,column=1,columnspan=2)
self.hello = StringVar()
self.hello.set(‘hello’)
Label(self.body,textvariable=self.hello).grid(row=2,column=1)
return

PJM 32CASC

Data Entry
class dialog:
def hello(self):

print ‘hi Mom!’,self.entry.get()
return

def __init__(self,parent):
self.body=Frame(parent)
self.body.pack(padx=2) # More on this later!
Button(self.body,text=‘Hello’,command=self.hello).grid(row=0,column=0)
Button(self.body,text=‘Quit’,command=self.body.quit).grid(row=0,column=1)
self.entry=Entry(self.body)
self.entry.insert(INSERT,’<default>’)
self.entry.grid(row=1,column=1)
return

PJM 33CASC

The big GUI

TASK: Build a simple GUI for Lagrangian
—Should have a QUIT and PLOT button
—Needs a labeled entry field for number of steps to

take (default value is 0)
—When you click on the PLOT button, the code

should run ‘lagrangian’ the appropriate number of
steps and then Gnuplot the density field

—Extra Credit: Add a status label that indicates
what’s going on (waiting for input, calculating,
plotting). This uses the “textvariable” option

PJM 34CASC

Building and installing a package

Bazillions of Python modules… How do we find
them?
—http://www.vex.net/parnassus/ (Vaults of

Parnassus)
—http://starship.python.net/ (The Starship)

Once we got it, how do we install it?
—The miracle of “distutils” helps simplify life for the

end user….

PJM 35CASC

Let’s build something…

Grab a copy from the class directory...
—% cp /usr/gapps/python/tru64_5/class/lagrangian-

0.1.tgz .
—% gunzip -c lagrangian-0.1.tgz | tar xvf -
—% cd lagrangian-0.1

Poke around and see what we have
— lagrangian.c -- my original cruddy source code
—wrapper.c -- a hand written Python interface
—setup.py -- build control…

PJM 36CASC

The Magic handshake

% python setup.py build
Now we have a build directory with a “temp” and “lib”
directory for this version of python and the current
machine configuration (this allows multiple, non-
overlapping builds)

We can try to install it….
—% python setup.py install

We can install it elsewhere
—% python setup.py install --home ~
—% python setup.py install --home

~/pub/$SYS_TYPE

PJM 37CASC

Steering: Leave the driving to us!

With steering, you “write the main()”
Complete customization and access to low level
structures allow the end user to control the package

>>> from lagrangian import hydro
>>> h = hydro() #
zones,radius,gamma,dt,velocity,density,energy
>>> dir(h)

PJM 38CASC

Inspection

Part of the power of steering is “inspection” -- looking
at low level values...
>>> h.velocity
>>> h.zones
>>> h.density

TASK: Use Gnuplot to show initial density field

PJM 39CASC

Object control

You can override data values more easily in a
scripting language than what a developer might
provide...
—>>> for j in h.zones: h.position[j] = 1.1**j

You can mess with low level structures….
—>>> h.velocity = h.nodes*[3]
—>>> h.dt = 0.001
—>>> h.step()
—>>> h.density[3] = 2
—>>> h.update_pressure()

PJM 40CASC

Final Exam

Using the lagrangian hydro, plot density at step 0,
500, 1000, 1500
—>>> H = hydro(velocity=-1, zones=200)

PJM 41CASC

Summary

Python is great for general programming and short
knock-off scripts
You can run and interact with existing programs just
like in bash or ksh or csh (but better!)
You can manipulate data in text files with powerful
regular expression and string functions
—Also interfaces to data formats like PDB and HDF5

Graphics and Plotting package interfaces
Build complex GUIs
Steer

PJM 42CASC

More info….

http://www.scipy.org
http://www.python.org/doc/Intros.html
http://starship.python.net/crew/hinsen/
http://diveintopython.org
http://sourceforge.net/projects/numpy
Python Essential Reference, 2nd Edition; Beazley;
ISBN: 0-7357-1091-0
Programming Python; Lutz; ISBN: 1-56592-197-6

Call me… I’m here to help!

PJM 43CASC

A drama in four acts…

ACT I: Basic Scientific Python
ACT II: Using Python Numeric
ACT III: Building Simple Extensions in Python
ACT IV: MPI Parallel Programming in Python

PJM 44CASC

ACT II: Using Python Numeric

This section is mostly hands-on, at the Python
prompt
This tutorial covers similar material to David Ascher’s
tutorial at
http://starship.python.net/~da/numtut/array.html
But with added material and exercises

PJM 45CASC

Numeric

Numerical Python adds a fast, compact,
multidimensional array language facility to Python.
The array operators are quite FORTRAN 90ish
The for element operations
— infix operators are overloaded to perform the

“right” thing vector * scalar --> vector (by scalar
broadcast)

—vector * vector --.> vector (by pairwise application)
—matrix * vector --> matrix (row-wise multiplication)
—matrixmultiply(matrix,vector)

Data is stored homogenously in a variety of C data
types (char, sign/unsigned byte, short, int, long, float,
double, complex float, complex double)
Numeric.matrixmultiply, LinearAlgebra{determinate,
inverse,solve_linear_equations, lapack_lite}

PJM 46CASC

Using Numeric

>>> from Numeric import *
>>> A = array([1,2,3])
You can choose a type or let Numeric pick...
—>>> array([1,2],Float32) ==> an array with 32 bit (or

close) floats
—>>> array([1,2.5]) ==> an array with Float64 data
—>>> array([[1,2],[3,4]]) ==> a 2x2 matrix of longs

PJM 47CASC

Supported types…

char, int 8,16,32, long, float 8,16,32,64, complex 32,
64, 128, Python Object
Some of the types may not be available
Each array is homogenous
Once established, an array will cling to type and
shape (unlike Python arrays)
The type (at origin) is “fitted” to the data unless
otherwise specified

PJM 48CASC

Why an array of Python Objects

Hey! Isn’t that just a [list]?

DISCUSS: How are they different internally? How can
that affect their use?

PJM 49CASC

Concept of shape…

Every Numeric array object has a “shape” attribute
that describes its dimensionality and rectilinear
shape

>>> a = array([1,2,3,4])
>>> a.shape

>>> m = array([[1,2,3],[4,5,6],[7,8,9]])
>>> m.shape

>>> s = array(7)
>>> a.shape

PJM 50CASC

Shape is an attribute

You can’t change an item’s shape, you must create a
new item with a different shape (BUT WITH THE
SAME DATA)
>>> a = array([1,2,3,4,5,6])
>>> b = reshape(a,(2,3))
>>> c = reshape(a,(3,2))
>>> d = reshape(b,(6,))
>>> e = reshape(a,(2,-1))

DISCUSSION: Why is reshape a function and not a
method on the array?

PJM 51CASC

Getting started with data...

—>>> ones(5) ==> array([1,1,1,1,1],Int64)
—>>> zeros(5,Float64) ==>

array([0.0,0.0,0.0,0.0],Float64)
—>>> arange(3) ==> array([0,1,2],Int64)
—>>> arange(4,Float32) ==>

array([0.0,1.0,2.0,3.0,4.0],Float32)
—>>> m = fromfunction(f,(10,10))
—>>> a = b.asarray(’f’)

PJM 52CASC

The Zen of Numeric

Very few attributes and methods
Most operations implemented as functions
—This allows for non-Numeric arguments in a way

O-O style methods would interfere with
The mindset is one of FORTRAN rather than one of
Python wherever there are major clashes (except for
the zero based indexing!)

PJM 53CASC

Slicing & indexing arrays

Work a lot like Python lists
—BUT THEY DO NOT COPY ARRAYS!!!!!!

–use Numeric.copy to make that happen
—They also support multiple dimensions and

strides
>>> m = array([[1,2,3],[4,5,6],[7,8,9]])
>>> m[0] ==> array([1,2,3])
>>> m[:,1] ==> array([2,4,8])
>>>m[:2,:2] ==> array([[1,2],[4,5]])

PJM 54CASC

Fancy slicing….

>>> a = reshape(arange(9),(3,3))
>>> a[:,0]
>>> a[::-1,0]
>>> a[:::-1]
>>> a[::-1,::-1]
>>> a[…,0]

DISCUSS: Ellipses

PJM 55CASC

“Take” vs.. “Indexing”

Indexing drops the dimensionality of a result
taking selects within the same dimensionality

>>> m = array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
>>> m[0] ==> [1,2,3]
>>>take(m,(0,)) ==> [[1,2,3]]
>>>take(m,(0,2)) ==> [[1,2,3],[7,8,9]]
>>>take(m,(-1,0,2)) ==> [[10,11,12],[1,2,3],[7,8,9]]

PJM 56CASC

Flat, diagonal, trace

>>> m = array([[1,2,3],[4,5,6],[7,8,9]])

Flattening to 1D
—m.flat ==> [1,2,3,4,5,6,7,8,9] SHARED

Diagonal
—>>> diagonal(m) ==> [1,5,9] copy
—>>> diagonal(m,1) ==> [2,6] copy
—>> >diagonal(m,-1) ==> [4,8] copy
—Note that diagonal is a function

Trace (sum along diagonals)
—>>> trace(m) ==> 15 (1+5+9)

PJM 57CASC

Arrays can be reshaped

>>> a = arange(12)
>>> reshape(a,(2,6)) ==> [[0,1,2,3,4,5],[6,7,8,9,10,11]]
>>>reshape(a,(3,2,2)) ==>
[[[0,1],[2,3]],[[4,5],[6,7]],[[8,9],[10,11]]]
—3 planes of 2 rows of 2 columns

Reshaped arrays SHARE the same storage

PJM 58CASC

Other shape modifiers…

NewAxis
>>> b = array([1,2,3])
>>> b[:,NewAxis]
>>> reshape(b,(3,1))

PJM 59CASC

Filling arrays with data

Broadcasting a scalar
—>>> ones(5)*1.5 ==> [1.5,1.5,1.5,1.5,1.5,1.5]

Use basic Python containers
—>>> array(range(10))
—>>> array(xrange(1,20,3))
—>>> array((1,2,3))

Use the Python “map” function
—>>>def f(x): return x*x+3
—>>> array(map(f, arange(0,10)))

Use Numeric aware functions (ufunc)
—>>> sin(arange(101)*pi/100)

PJM 60CASC

UFUNC

Special, array aware functions that replace builtins
and have other properties….

>>> total = add.reduce(a)
>>> rtotal = add.accumulate(a)
DISCUSS: Why is this faster?

add, subtract, multiply, divide, remainder, power, arccos, arccosh,
arcsin, arcsinh, arctan, arctanh, cos, cosh, exp, log, log10, sin, sinh,
sqrt, tan, tanh, maximum, minimum, conjugate, equal, not_equal,
greater, greater_equal, less, less_equal, logical_and, logical_or,
logical_xor, logical_not, boolean_and, boolean_or, boolean_xor,
boolean_not

PJM 61CASC

More functions

transpose(a) -- flip axes
repeat(a,repeat)
choose(selector, filler)
concatenate((a0, a1, a2, …))
ravel(a) (same as .flat)
nonzero(a) (filter)
where(condition, x, y)
compress(condition,a)
clip(m, min,max)
dot(m1,m2)
matrixmultiply(m1,m2)

PJM 62CASC

Useful methods

itemsize() – size of element
iscontiguous() – stored contiguously
typecode – element type
byteswapped() – Change endianism
tostring() -- serialation
tolist() – to python lists

PJM 63CASC

Element-wise operations

+,-,*,/,** with normal precedence
—>>> a = array([1,2,3,4],Float64)
—>>> b = array([10,20,30,40],Float64)
—>>> m = array([[11,22,33,44],[55,66,77,88]])
—>>> a + b ==> [11,22,33,44]
—>>> a**2 ==> [1,4,9,16]

Where operands are not of equivalent rank, a
replication takes place
—>>> a + 3 ==>[4,5,6,7] the rank 0 scalar 3 works

like a rank 1 vector
—>>>m + b ==> [[21.,42.,63.,84.],[65.,86.,107.,128.]]

(replicate the row, note the type of the final matrix)
—>>>m * 2

PJM 64CASC

Cast and coercion

Numeric performs proper coercion of its types during
operations and may be forced to upcast with asarray
function or downcast with astype method.

The exception is Float32 * Python float

from numerical Python web docs

PJM 65CASC

Element-wise functions and reductions

Some functions in Numeric (not math!) work element-
wise across an array
—sin, cos, abs, sqrt, log, log10, maximum, minimum
—For functions of multiple arguments, rank

replication makes arguments the same size before
applying the operator,
–>>> maximum(a, 3)

Some reduce the elements of the array
—sum, product,

They can be combined and can include non-Numeric
array elements like lists and tuples
—>>> x0 = (1,1,1); x1 = (3,3,3)
—>>> sqrt(sum((x1-x0)**2))

PJM 66CASC

Thinking with Vectors....
We know that the closed form of ∑n

i=1 i = n*(n+1)/2.
was found by a young Gauss when being punished by
a tyrannical schoolmaster who assigned him the task
of adding 81297+81495+....+100899 to which Gauss
snapped back 9109800. He did it with clever
vectors!!! Consider a smaller, simpler form with
uniform stride of only 1
1 + 2 + 3 + ... + 9 which Gauss saw as
—1 + 2 + ... + 8 + 9
—9 + 8 + 7 + ... + 1
—or 9 pairs that each add to 10 or sum = 9*10 / 2

In Numeric
—>>> a = arange(10)
—>>> a + a[::-1]
—>>> sum(a + a[::-1]) / 2

See Why Isn't There a Nobel Prize in Mathematics? by Peter Ross of UC Santa Cruz

PJM 67CASC

Exercise Gauss

—Write a Python script that does the work of young
Gauss, that is find the sum of the numbers from
81297 to 100899 with uniform stride 198 by using
vectors
–answer should be an integer

PJM 68CASC

Exercise Points

—You have a series of points in 3 space... Figure
out the distance between adjacent pairs
–Input: array([(0,0,0), (0,1,0), (0,1,1), (1,0,0),
(1,1,0), (1,1,1),(0,0,1),(1,1,0)],Float64)
–answer should be a vector of double precision
values

PJM 69CASC

Exercise Triadiagonal

Consider a nxn tridiagonal matrix stored as du={du0, du1,...,dun-2}, d={d0,d1,...dn-1},dl={dl0,dl1,...dln-2}
Write a function triinflate(du,d,dl) that returns a fully
inflated matrix with all the zeros
Write matrix multiply for a tridiagonal (du,d,dl) times a
rank 1 vector v
Write a tridiagonal system solver (Ax=b) where A is
tridiagonal and b is a rank 1 vector. Use Thomas’s
algorithm (we’ll discuss it) and don’t worry about
pivoting or any of that stuff.
Use the matrixmultiply in Numeric and the
solve_linear_equations in LinearAlgebra to check
your work
Example:m = array([[1,2,0],[3,4,5],[0,6,7]); b =
array([10,20,30])

PJM 70CASC

Final Exercise:

Following discussion, rewrite in Numeric...

def step(u,dx,dy):
nx, ny = u.shape
dx2, dy2 = dx**2, g.dy**2
dnr_inv = 0.5/(dx2 + dy2)
err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):

tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 + (u[i, j-1] + u[i,j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return sqrt(err)

PJM 71CASC

A drama in four acts…

ACT I: Basic Scientific Python
ACT II: Using Python Numeric
ACT III: Building Simple Extensions in Python
ACT IV: MPI Parallel Programming in Python

PJM 72CASC

ACT III: Building Simple Extensions in
Python

The TRUE power in Python is the ability to customize
with your own libraries and modules.
These “compiled assets” extend Python with speed,
familiar interfaces, and bitwise compatibility with
existing codes and libraries

“From here to there. From there to here. Funny
things are everywhere!” -- Dr. Suess

PJM 73CASC

Overview

Wrapping simple FORTRAN routines with pyfort
—Write a F90’ish interface spec
—Types map directly to Numeric arrays
—The final interface is sort’a Fortrany

Wrapping C routines with SWIG
—Write a interface sort of like a .h file
—Basic types are provided
—Other types are handled opaquely
—Use “typemaps” to handle weird types

Building a module from scratch
—With great power comes great responsibility -- A.

Dumbledore

PJM 74CASC

Some things we won’t cover…

things are more complicated in C++ land…
— templating
—classes
—methods
—overloading
—memory
—c’tor/d’tor
—and so forth…

CXX
boost.Python (BPL)
—http://www.boost.org/libs/python/doc/

PJM 75CASC

PYFORT

Believe it or not, there is a lot of great old FORTRAN
code out there… Really!
It is stupid to rewrite and test it
The big libraries have established, well known, and
well thought out interfaces
— Interface may be driven by FORTRAN needs (e.g.

providing a scratch array of some dimension)
Numeric Python types and FORTRAN types overlap
nicely
— Is it coincidence or is it FATE!

PJM 76CASC

Pyfort files

Two kinds of files…
— .pyf describe the interfaces to

functions/subroutines
— .pfp files describe a collection of modules

pyfort provides a Tk GUI to build the .pfp files
.pyf files are built by hand
—They are tantalizingly similar to header

prototypes, but are not quite the same
—Get used to some duplication… All wrapping

methods suffer from it to some degree

PJM 77CASC

A really simple example…

function maximus(n,x)
integer n
real x(n)
real maximus
integer I
maximus = x(1)
do I=2,n
if (x(I) > maximus) maximus = x(I)

end do
return
end

% tar xvf
/usr/gapps/python/tru64_5/class/examples.tar

PJM 78CASC

The pyf description and the pfp project…

% cat maximus.pyf

cat fortran_demo.pfp
pyf(‘maximus.pyf’,

sources=[‘maximus.f’],
freeform=1)

function maximus(n,x)
! The way cool and super powerful maximus function
integer n
real x(n)
real maximus

end function maximus

PJM 79CASC

Build and test

% pyfort -b fortran_demo
% cp build/lib*/*.so .
% python
>>> from maximus import *
>>> maximus(7,[1,2,3,5,3,2,1])
5.0

PJM 80CASC

FORTRAN interfaces stink ;-)

What you need for F77 can be clunky, redundant, and
repetitive in Python
Pretty clearly, the first argument to maximus (while
important for Fortran77) can be computed from the
actual size of the array passed in the second
argument

function maximus(n,x)
! The way cool and super powerful maximus function
integer n=size(x)
real x(n)
real maximus

end function maximus

PJM 81CASC

Returning scalars

They work precisely the way they should which isn’t
the way you want

>>> from quadratic import quadratic
>>> quadratic(1,2,1)

subroutine quadratic(A,B,C,R1,R2)
real A,B,C
real, intent(out)::R1
real, intent(out)::R2

end

pyf(‘maximus.pyf’,sources=[‘maximus.f’],freeform=1)
pyf(‘quadratic.pyf’,sources=[‘quadratic.f’],freeform=1)

PJM 82CASC

Update in place….

This is not a recommended practice
—DISCUSS: Dangers & Hassles
—But, hey, it’s what the interfaces look like!
—Preference is to declare one array with intent(in)

and then copy into an automatically allocated
array declared with intent(out)

subroutine absolute(n,a)
integer n = size(a)
real, intent(inout)::a(n)

end

subroutine absolute(n,a,b)
integer n = size(a)
real, intent(in)::a(n)
real, intent(out)::b(n)

end

PJM 83CASC

Scratch space

Fortran77 interfaces sometimes require the user to
provide scratch space (to make up for the lack of
portable dynamic allocation)
pyfort allows the user to specify intent(temporary) for
arrays
such space is allocated on entry to the Python
function and deallocate on exit

subroutine justanexample(n,a,b,scratch)
integer n = size(a)
real, intent(in)::a(n)
real, intent(out)::b(n)
real, intent(temporary)::scratch(2*n+5)

end

PJM 84CASC

SWIG

Developed by the infamous Dave Beazley
Creates (from a single spec) wrappers for Python,
Perl, Ruby, TCL, ocaml, guile, scheme, php, and Java
Developed to wrap C and more or less C++
You specify a interface descriptor file (.i file) that
looks embarassingly like a .h file
Make sure /usr/gapps/python/tru64_5/opt/bin is in
your path (rehash)

PJM 85CASC

Hello world in 3 files…
% tar xvf /usr/gapps/python/tru64_5/class/swig_examples.tar
% cat hello_implementation.c
char* hello(void) { return “hello world!”; }

% cat hello.i
%module hello
extern char* hello(void);

% cat setup_hello.py
from distutils.core import setup,Extension
setup(ext_modules=[

Extension(‘hello’,[‘hello.i’, ‘hello_implementation.c’])
])
% python setup.py install --install-lib=.

PJM 86CASC

Pretty simple interfaces to structures
% cat structure.I
%module structure
%{
#include “structure.h”
%}
%include “structure.h”

% cat structure.h
typedef struct {

int a;
double b;

} int_double;

extern void absolute(int_double* value);

PJM 87CASC

Opaque types

SWIG handles types it knows nothing about
It creates a special “opaque” type that Python can
pass around, but cannot directly manipulate
Opaque types are great for things you are too lazy to
expose or whose internal features shouldn’t be
messed with from Python
You get opaque types by omission rather than by
commission. Just leave the definition out of the .i file.
E.g. Have a function declaration like:
—extern thing* new_thing(char*);

PJM 88CASC

Using typemap for special cases

Sometimes you don’t want types to be opaque…
You know exactly the Python object you want to
stand in for that type.
For example, a FILE* in C should be a <type file>
object in Python
You fix this with a “typemap” to teach SWIG how to
handle FILE*
This requires knowing a little about the Python-C API

PJM 89CASC

A Typemap for FILE*

%module typemap

%typemap(in) FILE * {
$1 = PyFile_AsFile($input);
if ($1 == NULL) {

PyErr_SetString(PyExc_ValueError,”argument must be a file”);
return NULL;

}
}

extern void print_first_line(FILE*);

PJM 90CASC

The shadow classes

SWIG creates a module.py file that contains classes
and interfaces
The int_double type in the previous example, for
instance, was mirrored by a normal Python class in
structure.py
This methodology make the new class available as
the base of an inheritance tree

PJM 91CASC

Devloping a wrapper by hand…

Python provides literally hundreds of hooks for
building and controlling functions and type objects
We can build very simple modules with a great deal of
control
—e.g. weird function argument calling patterns

We can build highly complex types with all the low
level details set properly
And of course, we can use our knowledge to debug
SWIG and PYFORT when they bomb

PJM 92CASC

Hello world by hand

Lets start with a basic, empty module
% cp /usr/gapps/python/tru64_5/class/*foobar* .
% python setup_foobar.py install --install-lib=.

The foobar module has only three attributes defined
—__file__ : The file that holds the implementation,

foobar.so
—__name__: “foobar”, useful for introspection
—__doc__: “” default, empty doc string

PJM 93CASC

Add a void function

Step 1) Define the function
—static PyObject* foobar_hello(PyObject* self,

PyObject* args) {…}
Step 2) Put the function in the method table
— {“hello”,foobar_hello,METH_VARARGS,”doc

string”},
Note how we use the Py_None value (with INCREF) to
represent a void return

PJM 94CASC

A drama in four acts…

ACT I: Basic Scientific Python
ACT II: Using Python Numeric
ACT III: Building Simple Extensions in Python
ACT IV: MPI Parallel Programming in Python

PJM 95CASC

ACT IV: MPI Parallel Programming in
Python

PJM 96CASC

Epilogue

http://www.python.org
http://www.swig.org
http://diveintopython.org
http://sourceforge.net/projects/numpy
http://pympi.sourceforge.net
Python Essential Reference, 2nd Edition; Beazley;
ISBN: 0-7357-1091-0
Programming Python; Lutz; ISBN: 1-56592-197-6

PJM 97CASC

Work performed under the auspices of the U. S. Department of Energy by Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48

UCRL-PRES-153662

